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Quantum Set Theory
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The complete orthomodular lattice of closed subspaces of a Hilbert space is consid-
ered as the logic describing a quantum physical system, and catjedrdaum logic

G. Takeuti developed a quantum set theory based on the quantum logic. He showed
that the real numbers defined in the quantum set theory represent observables in quan-
tum physics. We formulate the quantum set theory by introducing a strong implication
corresponding to the lattice order, and represent the basic concepts of quantum physics
such as propositions, symmetries, and states in the quantum set theory.

KEY WORDS: quantum logic; set theory; lattice-valued universe.

1. INTRODUCTION

The formulation of quantum physics in terms of lattice theory was first intro-
duced by Birkhoff and von Neumann (1936). In the setting, a system of quantum
physics is represented as a Hilbert space whose elements correspond to physical
states while propoistions in quantum physics correspond to closed subspaces of
the Hilbert space. A proposition of quantum physics is considered as a closed sub-
space of a Hilbert space consisting of states in which the proposition is certainly
true. Thus, complete orthomodular lattice of closed subspaces of a Hilbert space
may be considered as the logic describing a quantum physical system.

LetH be a Hilbert space consisting of physical states,Rftd) be a complete
orthomodular lattice consisting of all closed linear subspaces of equivalently,
consisting of all projections oH. P(H) is called aguantum logicThe set theory
developed in thé@(H)-valued univers® (1) by using the quantum logic is called
aquantum set theory

P(H)-valued univers®/ (1) is constructed by induction as follows:

Vi G {u 138 < «3Du c ViU : Du — P(H))} ,
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v PH) = U v P(H)
M

aeOn

G. Takeuti developed in Takeuti (1981) a quantum set theowfii) based
onthe quantum logi®(H). He showed in Takeuti (1978) that real numbers defined
in the language of the quantum set theory represent self-adjoint operators acting on
H. Thatis, real numbers M P(H) (seen from outsid¥ (")) represent observables
in quantum theory.

We use the notationq» , € instead of—, =, € in Takeuti (1981), where
q

a
def
9 =>q¥ = ¢ V(@A)
The equality= and membership relatiom corresponding to the quantum
implication —g are interpreted itv P(H) py
q

[u=v] = /\ U(x) >4 |[Xev]|)/\ N\ V() >4 |[xeu]|)

xeDu xeDu

|[x§v]| =\ |[u?x]| AV(X),

xeDv
where [A] is the truth value of sentencg&in V P(H),

Operator—q is an implication in the sense that

[ Al —q ¥ =[v].
But, unfortunately,

[¢ ~v¥] <[] doesnotimply [] <[v —qé£]

unless [p] and [v] are compatible, because of nhondistributivity of lattie€H).
It follows that the transitivity of:q :

(u:v) A (v=w) —q (u=w)

is too restrictive to develop a set theory. That is, equality axmms:for
are not valid inv P(H),

In order to restore the equality axioms, we introduce stronger implication
calledbasic implication which represents the lattice order:

1 ifa<b

a— b)=
(@—1b) 0 otherwise,

where 1, 0 are the top and bottom of the complete lattice.
In Titani (1999), we formulated a lattice-valued logic and a lattice-valued
set theory, by introducing the basic implicatien. The lattice-valued logic is the
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logical counterpart of complete lattice. The completeness of the lattice-valued logic
was proved in Takano (2002). For an arbitrary complete lafficthe £-valued
universeV* is a model of lattice-valued set theory based on the lattice-valued
logic. SinceP(H) is a complete latticey ") is a model of the lattice-valued set
theory. The quantum set theory &™) is formulated as a lattice-valued set
theory with the quantum implicatior- 4 as well as the basic implicatios .

Remark 1. The basic implication is not the only interpretation of implication for
lattice-valued logic. For example, I€tbe an orthomodular complete lattice anad

be the center of, that is,Z be the complete Boolean subalgebra which consists
of all a € £ distributive over all subsets &f.

Z= !a eL | V{ba}c£<a /\\/ Dy =\/(a/\ By), av/\ba =/\(av ba))}

Then/ is also a model of lattice-valued logic with the following interpretation of
implication on.:

@—>by=\/{zeZ|larz<h)

Elements of the Boolean-valued subunivexsec VP are called check
sets. The set of rational numbers defined in the univerd&) is a check sef)
corresponding to the s&t of rational numbers. Aeal numbeis defined inv P(H)
as an upper pad of a Dedekind cut of rational numbe@. Complex numbers
are defined iV P(H) as pairs of compatible real numbers. An elemeaof V P(H)
such that ti is a real (complex) number” holds MP(") | is called aquantum real
(complex) number

Each proposition, which is considered as a projectiorHgns represented
as a quantum real numbarsuch that =1 v u=0] = 1. A symmetry, which

is considered as a unitary operator dn iqs reprgsented as a quantum complex
number. A state of the physical system, which is considered as a unit ve¢ior in

is represented as a set of quantum complex numbers indexed by unitary operators
onH.

In Section 2, 3, we review proposition system in Piron (1976) and lattice-
valued set theory in Titani (1999). A quantum set theory is formulated in Section 4.
Real and complex numbersa°(") | that is, quantum real and complex numbers,
are discussed in Section 5. Then, in Section 6, physical concepts such as proposi-
tions, symmetries, and states are represented in the unwéfseé.

2. PRELIMINARIES

In this section, we review a formulation of quantum physics by using the
language of lattice, in Piron (1976).



2578 Titani and Kozawa

2.1. Proposition System

Complete lattice satisfying the following axoims (C), (P), (A) is called a
proposition systegrand elements of are callecbropositions The top and bottom
elements of complete lattic® will be denoted by 1 and 0, respectively.

V=1  \/e=0

(C): For eachc € £ there exists a unique orthocomplemente £ such that
(C) ¢t =c
(C) cvet=1, and cAact=0
(C3) b<c=ct <bt for Vbe L

(P): If b, c € £ andb < ¢, then the sublattice of generated byb, b+, c,ct}isa
distributive lattice.

A complete lattice satisfying (C) and (P) is calledaamplete orthomodular lattice

If b £ candb < c, one say that covers bwhen
b<x<c = x=b or x=c.

A proposition which covers 0 is called atom
(A): (A If bis a proposition different from 0, there exists an atpra b.
(A2) If pisanatomand ip A b = 0, thenp v b coversh.

A system of quantum physics is represented as a proposition systefbket
the proposition system. An observable is defined as a correspondence between the
propositions associated with the measuring apparatus and propositions associated
with the physical system. Thusgcamorphism of a complete Boolean algebra into
the proposition system is called ahservablewherec-morphisnis a mapping
of a complete orthocomplemented latti€ginto a complete orthocomplemented
lattice £, such that

1 o(V;b) = V()
2. blc=obloc.

2.2. Compatibility

Definition 2.1. Elementsb, ¢ of a complete orthomodular latticé are said to
be compatible in symbolsclb, if the sublattice generated i, bt, ¢, ¢t} is
distributive. Forb € £ and a subsef of L,

oA &L va e Ala).

Theorem 2.1. (Piron (1976) pp. 25-27). For elements b,c of a complete ortho-
modular latticeZ, the following conditions are equivalent.
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1. b,c are compatible

2. bArc)v(btAc)v(bAachH) v btAach) =1
3. bArc)v(btAc)=cC

4. bvcth)ac=bac

Theorem 2.2. (Piron (1976) p. 27). For a subset C of a complete orthomodular
lattice £ and ke L, if bJC then

\/(brc)=ba(\/C), Abve)=bv(/C).

ceC ceC

Theorem 2.3. (Piron (1976) p. 28). For a subset C of a complete orthomodular
lattice £ and be L, if bJC then

bj\/C and 4 AC.

Definition 2.2.Let £ be a complete orthomodular lattice. Foib € L,

(@—qb) %Ml v @nb).

Then we have

Theorem 2.4.(Takeuti (1981) p. 305). If, c € £ and ac, then

c<(a—gqb) < anc=<h.

2.3. Direct Union

Definition 2.3.Direct union\/,, £, of a family {£,} of proposition systems is the
complete orthocomplemented lattice consisting of famifieg wherex, € £,
with the ordering defined by

{Xo} < {Ya) g Vo(Xa < Ya)

and orthocomplementation defined by
f
et Q8L iy,

Theorem 2.5. (Piron (1976) p. 34). In the direct unio¥y , £, of a family{L,}
of proposititon systems,

X} Yo} ifandonlyif Ve(Xod Yo)
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Definition 2.4.A proposition systent is said to berreducibleif its center consists
of0and 1, i.e.

Lis irreducible<d:e]; Z ={0, 13,

where the centeZ of L is the set of elements compatible with all elementg of

Z={ze L]|V, e L(zla)}.

Theorem 2.6. (Piron (1976) p. 35). Every proposition systefnis the direct
union of irreducible proposition systems.

2.4. Standard Proposition SystenP(H)

A system of quantum physics is represented as a Hilbert space whose el-
ements correspond to physical states. Propositions of the quantum physics are
represented as closed subspaces of the Hilbert space, which forms a proposition
system. Proposition systef(H) consisting of closed subspaces of a separable
Hilbert spaceH, or equivalently consisting of all projections dt is called a
standard proposition systerin what follows we deal with a standard proposition
systemP(H) unless otherwise mentioned.

3. LATTICE-VALUED SET THEORY

Proposition systenP(H) is a complete lattice. Thus, a lattice-valued set
theory based on lattice-valued logic is develope (i )-valued universg/ P(H)
(Titani, 1999). In Section 3.1, the lattice-valued set theory is reviewed briefly.

3.1. Lattice-Valued Universe

Let £ be any complete latticeC-valued universe/* of lattice-valued set
theory is constructed by induction:

V,F ={u|3B< adDuc Vi(u:Du— L)},
VE= | J VrE.
acOn

The leastr such thau € V£ is called therank of u. On the complete lattic&,
operations— and— are defined by

1, ifa<hb,
0, otherwise,

(a— b)dzef\/{xe2|a/\x5b}=
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1, ifa=0,

def
a=@-0 \/{ xezlanx=0) 0, otherwise

Formulas of lattice-valued set theory are constructed from atomic formula of the
formu = v oru € v by logical operators\, v, —, —, V, 3. Atomic formulas are
interpreted inv~ as

[u=vl= A () > Ixevh A A v6) > [x € ub),

xeDu xeDv

[uevl=\/ V() ALu=xD.

xeDv

The logical operators are interpreted as the corresponding lattice opertgrs on
The following abbreviations will be used.

Og <d=8f> (¢ — 9) — 9).

Then

[o0] = 1 if[e] =1,
P10 otherwise

We say an elememnt of £ is O-closed if p= oOp.

Lemma 3.1. (Titani (1999)). Foreveryyv e V£,

1. Ju =] iso-closed,
2. [u = v] is distributive over any subséy}i of £ :

(\k/bk)/\|[U=V]| =\k/(bk/\|[U=V]|)-

Lemma 3.2. (Titani (1999)). Foreveryyv,w e V£,
Lu=vlalv=w] <[u=w]
2. [luew] Afu=v] <[vew]
. [weul Afu=v] <[wevV]

Definition 3.1.

Vxeup(x) <d:ef> YX(X € U — (X)), Ixeup(X) <d:ef> AX(X € u A p(X)).

Lemma 3.3. (Titani (1999)). For a formula ¢(a),
[Vxeup(X)] = /\ [x eu— o(X)], [Ixcup(X)] = \/ [xeu A o(X)].

xeDu xeDu
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Theorem 3.1. (Titani (1999)). The following A1-A11 are valid in ¥.
Al.Equality: Yuvv(u = v A ¢(u) — ¢(V)).
A2.Extensionality:Yu, v(YX(X € U <> X € V) —> U =V).
A3.Pairing: Yu, vaz(Vx(x € z < (X = U VvV X = V))).

The set z satisfyingx(x € z <> (X = u v x = Vv)) is denoted byu, v}.
A4.Union: Yu3z(Vx(X € z <> Ayeu(x € y))).

The set z satisfyingx(x € z <> 3y € u(x € y)) is denoted by J u.

A5. Power setvudz(vVx(x € z <> x C u)) where XC u <d:e]; Vy(y € X —
y € u). The set z satisfyingx(x € z <+ x C u) is denoted byP(u).

AB. Infinity: Yu(3ax(x € u) A ¥xeudy € u(x € y)).

A7.Separation:Vuav(Vx(X € v <> X € U A ¢(X))).
The set v satisfyingx(x € v <> X € u A ¢(x)) is denoted byx € u | ¢(x)}.

A8. Collection: Yuav(vYxeudyg(X, y) — Vx € uayo(y € v A ¢(X, Y)).
A9. e-induction: Vx(Vyexep(y)) = ¢(X)) — Yxp(X).

Al10. Zorn: Vx € ug(x € u) A Yu(Chain(v, u) - | Jv € u) — 3z Max(z, u),
where

. def
Chain(v, u) <:e> V C UAVX, YeV(XCY V yCX),
Max(z, u) (d:ei ZEU A VX € U(ZCX — Z = X).

Al11. Axiom of & : Yu3zvt(t € z <> O(t € u)),where g <d=e]; (p—> L)— L
The set z satisfyingt(t € z <> <(t € u)) is denoted byou.

Definition 3.2. ue V¥ is said to belefiniteif u(x) = [x e u] for all x € Du.

Lemma 3.4. For any ue V¥ there exists a definte & VX such that
[u=v] =1

Proof: Foru e V£, let
Dv="Du, Vv(x)=[xeu].

Thenv is definte and i = v] = 1. O

In what follows we may assume that eack: V* is definite.
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3.2. Embedding of Lattice-Valued Universes

Let £; and £, be complete lattices. We denote the tgpL; of L; by
1. (i =1, 2). An embedding of £, into £; is said to baunital if o(1.,) = 1.,,
andsup-preservingf o (\/ A) = /a0 (@) for ACL;.

If o:£1— L5 is a unital sup-preserving embedding, then

a<b < o(@ <o and o(a— b)=(c(@) —> o(b)) for a,be L;.

Definition 3.3. A unital sup-preserving embeddirgL;— L, is extended to
embeddingr:V 41—V £2 defined by

D(ou) ={ox|x e Du} 3.1)
(ou)(ox) = \{o[X euls, | X €Du, [ox=0XTg, =1} '
where [ Iz, is the truth value inV% for i =1,2. The mapping

o : V£ — V£2 s called theembedding associated with: £1 — L».
Theorem 3.2. Let 0:£;—L, be a unital sup-preserving embedding, and
0:V£1V£2 be the embedding associated withC,— £,. Then foryv e V4,
olu=v]l,, =[ocu=0oVv]le, and ofueVv], =[ouecoV]g,.
Proof: We assume the theorem fary € V2. For the first part, it suffices to
show that
[cu=0oVl;, =1 < [u=V], =1

By the induction hypothesis,

[ox=0X1s,=1 < [x=X],, =1 for x,x'eDu.

Itfollows that @u)(ocX) = o[X € U]z, forx € Du. If [u=v] = 1,thenforx
Du,

(cu)(ox) =ol[xeulz, <olx eVl

=0 ( \ [x=y] w(y)) <\ [ox=0ylz, A (oV)(oy)

yeDv yeDv

<[oxeov]g, for xeDu.

Symmetrically, 6Vv)(ox) <[oxeou],, for xeDv. Therefore,
[ou=0V],, = 1. Conversely, if fu = ov] ., = 1, then forx € Du,

o[xeulz, =(cu)(ox) <[ox eoV]ls, =c[x e V],

SIxeuls =[x evle,.
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Symmetrically, [k € vz, < [x € u] ¢, forx € Dv. Therefore, i = v] -, = 1.
Thus,

olu=vl,, =[ou=o0Vlg, (3.2)
By using (3.2) we have

oluevle, = \/ (0lu=xls AolxeVle)
xeDv

\/ ([ou=0Xlz, A (ou)(ox) = [ou € oV],.
xeDv

O

Corollary 3.1. Leto:L£1— L, be a unital sup-preserving embedding such that
o(pAQ)=opAcp for p,gels, ando:VF1—V~2 be the embedding associ-

ated witho:L1— Lo. If ¢(X1, X2, ..., Xn) IS @ bounded formula of lattice-valued
set theory, and 4 Uo, ..., u, € V1, then
ofe(u, uz, ..., unlz, = [e(oug, Uz, ..., cun)lz,-

Proof: By induction on the complexity afp. Since other cases are obvious, we
prove only the case tha(uy, Uy, .. ., Up) is of the formvxeug(X, uz, Uy, ..., Up).
If {pi} is a set ofo-closed formulas, thea(A; pi) = /\; o(pi). Hence,

o[Yxeup(X,us, Us, ---,uy)] = o ( /\ [Xx € u— o(X,u, Uy, ---, un)]>

xeDu

= /\ o[x e u— @(X,us, Uy, -+, Uyl

xeDu
= /\ [ox € ou — @(oX,0uU, 00Uz, -+, 0Uy)])
xeDu
= [ Vxeou(x,oug, oUy, -+, aun)]).
O

3.3. Check Sets

Let V be a universe of ZFC in which lattice-valued univergé is
constructed. The subsgf= {1, 0}) of L is a Boolean subalgebra af, and the
universeV is isomorphic tov?2.

Definition 3.4. Elements of the subuniverd& of V£ are calleccheck sets
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The check set corresponding o= V is denoted byd. The check seti is
defined by

Dlu ={X|x e u}
ux) =1

“x is a check set,” in symbols ck], can be expressed in the language of lattice-
valued set theory (Titani, 1999):

ck(x) < Vi[t € x < O(t € x) A ck(t)].

Identity mappingl : 2 — L is a unital sup-preserving embedding, ands em-
bedded inv~, by

uruteVZc Ve (ueV).

By Corollary 3.1 we have

Theorem 3.3. If ¢(uy,...,Uy) is a bounded sentence of ZF set theory with
constants y, ..., Up in V, then

o(U1,...,Up) < [e,...,00)] =1

3.4. P(H)-Valued UniverseV P(H)

The proposition systerR(H) is a complete lattice, arfd(H )-valued universe
V P(H) is constructed as a lattice-valued universe. G. Takeuti developed a quantum
set theory inv P(") by using unary operatioh as negation, and implication
defined by
def
¢ —>q¥ = ¢ V(pAY)

—q will be called quantum implicatiorto distinguish from the basic implica-
tion —. Equality = and membership relatioa corresponding to the quantum
q q

implication— 4 are defined by
def
U=V & VX(X €U =g XEV) AVX(X €V =g XEU)
q q q

def
Uev < 3I(X e vAU=X).
q q

By equaity axiom we have

Lemma3.5. Foru,veVPH [u=v] < |[u?v]| and [u e v] < [uev].
g
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4. A FORMULATION OF QUANTUM SET THEORY

In this papemuantum logids formulated as a lattice-valued logic &{H)
with new logical operatot.

4.1. Language of Quantum Set Theory
Primitive symbolsare:

1. Indivdual variablesx, y, z, ...

2. Predicate constants;, €,

3. Logical symbolsa, v, —,—, 1,V, 3.
4. Parentheses: (,)

Atomic formaulasare expressions of the forth = t, or t; € t, with terms
t1, to. Formulasare constructed from atomic formulas, by using the logical sym-
bols. To denote formulas, we use

0, E L e(X), ...

Definition 4.1. O-closed formulasire defined inductively by

1. Aformula of the formg — i or —¢ is O-closed.

2. If formulasg andy are o-closed, thenp A ¥, ¢ V ¥, =@ and gt are
O-closed.

3. Ifaformulasp(x) is ao-closed formula with free variabbe thenvxg(x)
and3xg(x) ared-closed.

4. o-closed formulas are only those obtained by 1-3.

We usel’, A, T, A, ... to denote finite sequences of formulgs;y, ...
to denotec-closed formulas; andl, A, T1, A, . .. to denote finite sequences of
o-closed formulas.

A formal expression of the formt = A is called asequentThe inference
rules of the quantum logic are obtained from rules of lattice-valued logic in Titani

(1999) by adding axioms for orthogonalization
Axiom schema of lattice-valued logig = ¢

Structural rules:
= A = A
o, I'= A I'=> A,¢
0,0, ' = A = A, 0,0
o, = A '= A, ¢
Lo, v, 1= A = A0, ¥, A

Interchange:
Oy, o, = A = A, v, 0, A

Thinning:

Contraction:
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t_l"=>Z,<pg0,l'I=>A F=A,p0Ill=A

Cu — —
OLII= A A I'II=A,A
'=Ap9 Ill=A
1= A A
Logical rules:
I'=A¢ T=A0p o, T=A @ I'=A
o, ' A ¥, [ = A Fr=Ael= Ay
"o AU, T=A oAy, = A F=A@oAY
Fr=A30=AY
L= Aony
V_tp,T:>A1ﬂ,F=>A = A9 =AY
" ovy,T=A F=Aovy T=A0AY
o, I=>AYy, IT=A
pVvy, = A
F'=Agy,7T=A o, T =AY

:(¢—>W),F,f=>Z,A T=A, (p— ¥)

pt), I = A I'= A, ¢(a) I'= A, ()
"Vxe(X),T = A F'= A, Vxp(x) T'= A, Vxg(x)

wheret is any term wherea is a free variable which does
not occur in the lower sequent.
@), T = A @), I = A I'= A, o)
C3Axe(x), T = A Ixg(x),T = A I'= A, 3Ixe(x)

wherea is a free variable which does whdrés any term
not occur in the lower sequent.

The above-mentioned are inference rules of lattice-valued set theory. For
guantum logic, we postulate the following (C) and (P) corresponding orthomodu-
larity of proposition system.

C:(Cl) ¢ = ¢t
(C2)=oVvoeh pret=
C3 p—>v)=yt -yt
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P: o= V), ¥y =V Ap, ¥ Aph.

The property (A) of proposition system is postulated as nonlogical axiom
Al12in Section 6.1.

Definition 4.2. Formulasp andy are said to beompatible in symbolspl, if

o= (pAY)V(pAYh).

4.2. Nonlogical Axioms of Quantum Set Theory

The axioms A1-A11 of lattice-valued set theory in Theorem 3.1 are valid in
VP(H) We adopt those A1-A11 and additional axiom A12 as nonlogical axioms of
quantum set theory. Thus, theorems of lattice-valued set theory are vaifd'in.

5. REAL AND COMPLEX NUMBERS IN Vv P(H)

The setN of all natural numbers is constructed from the empty set by the
successor functior — x U {x}. Integers are constructed as equivalence classes
of pairs of natural numbers, and rational numbers as equivalence classes of pairs of
integers. The real numbers are defined as upper parts of Dedekind cuts of rational
numbers. Complex numbers are defined as pairs of real numbers. We denote the
set of all integers, rational numbers, real numbers, and complex numbers in the
universeV of classical set theory ZFC, %, Q, R, andC, respectively.

5.1. Definition of Quantum Real Numbers

Itis known that the sets of all natural numbers, integers, and rational numbers
defined in a lattice-valued set theory coincide with checkNe#s Q correspond-
ing toN, Z, Q, respectively. Upper part of Dedekind cut is a subset@ afrhich
is not necessarily a check set1 i§ a subset o) in symbolsu C Q, is defined

by

ucQ &= def Vx(xeu—>xe@)

Lemma5.1. If [uc Q] =1inVPH), then there exists v in %H) such that
Dv={F|reQ}=DQ and [u=Vv] =1

Proof: Notethat k=y] €e2and x=y] AV;a =V,[x=y]l A &) for
V{g} c Q. Definev by

={f|reQ}, v({)=[feu] for reQ.
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If X € Du,
u) < [xe QI alxeul = \/(Ix=F1 Alxeu])
reQ
=\ {Ix=T1AlFeu]) <[xeV]
reQ
Therefore, f =u c Q] = 1. O

In what follows, ‘U is a subset o@", in symbolsu C Q means thaDu =
{FIreQ}anduc Q] =1, and the power set @ is denoted byP(Q), i.e.,

P@Q) = {x|xcQ}.

Definition 5.1.(in VPM)). u e P(Q) is said to be aeal number if
(D1) 3FreQ(reu) Adr e Q(r eu)*
(D2) VreQ((r € u) < 3seQ((s < 1) A (s € U)))
Lemma 5.2. If Juisareal numbdr= p # 0, then there exists a complete
Boolean subalgebra B of (M) such that{p} U {[F € u]|r € Q} C B.
Proof: If s,teQ ands<t, then
[Vr e Qr e w] <[8eul <[feu]<[3r € Qr €u)]
by (D2). It follows that
M = {[3reQ( e u)], [VreQ e ]} U([F eul [T € Q)
is linearly ordered. LeB be the subalgebra d?(H) generated byM. B is a
complete Boolean subalgebra®{H) andp € B. O
Lemma 5.3. For u e VP if p =[uis areal numbd in VPM) then there
exists ve VPM) such thatbv = {f |r € Q} and

p=< |[u?v]| and [visareal numbgr= 1.

Proof: Let

[Feul Ap, r <0,

Dv=(F|reQ), V(f)z{([reu]Ap)v pt. O<r.

By Lemma5.2{p} U{[F € u] | r € Q} is compatible. It follows that

p<fu ?v]] and [vis areal number} 1.
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Definition 5.2. ue VP® is called aquantum real numbeif
Du={f|re@Q}, and [uisareal numbgr=1.
In VP the set of all real numbers is denotedsByi.e.,

DR = {u e VP™ | uis a quatum real numbgr 9(u) = 1

Lemma 5.4. If u, v are quantum real numbers, then

|[u?v]| =1« [u=v]=1

Proof: It follows from the fact that § -4 b)=1 <= (a — b) = 1for
a,be P(H). O

5.2. Representation of Quantum Real Numbers

Theorem 5.1.(Takeuti (1978)). If uis a quantum real number, then,ER —
P(H) defined by
Eu()) = I € u]
A<r
is a resolution of the identity. That is,,Batisfies
A E() =0, \/E®=1 En) = /\ Eun).
reR reR Ry
Conversely, if E R — P(H) is a resolution of identity and & V P(H) is defined
by
Du={f|reQ} anduf)=\/E(s)
S<r

then u is a quantum real number and E E.

Proof: Let [u is a real number lessk 1. Thenr <s implies [ € u] <
[3 € u]. Hence,Ey(r) = A3 € ul > [F € u]. It follows that

r<s

VE@:>\IFeu=1 AE®<AIFeul=0,

LeR reQ LeR reQ

and /\ Es(w) = /\ AIT €ul = AIF € u] = E,(3).

A<p A< U<r A<T
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That is, E, is a resolution of identity. Conversely, i is a resolution of identity,
let

Du={f|reQ} and u()=\/E(@s) for reqQ

s<r

It is obvious thau is a quantum real number. If< r < p, then
E(M) <[F € ul <Eu(n) .. E() < Eu(w),
Eu(}) <[ eul = \/ E(9<E(n) .. E.(4) <E(w).

s<r

It follows thatu is a quantum real number aiig) = E. O
Thus, quantum real numbers represent self-adjoint operatdrs dime quantum
real number representing self-adjoint operakowill be denoted byA.

[A=ul =1 <= A=A,

5.3. Operations+ and - on R
Definition 5.3. Quantum real numbens, v are said to beompatibleif I € u
and § € v are compatible for al, s € Q, i.e.,

vr, seQ((F € u)l(3 e v)).

If u, v are compatible quantum real numbers, thepv is defined by

u +vd=ef{r €QILreQ(r =ri+r) A1 eu) Az ev)).
For quantum real numbets v,

ugvg‘v’r(r EV =T €U).

u is said to bepositiveif 0 < u. If u, v are compatible positive quantum reals, then
u - v is defined by

U-v={reQ|arLreQ(r=ri-r)A(eu)A(rseVv)h.

The definition of- can be extended to the case thatv} is any compatible
set of qunantum real numbers and also quantum complex numbers.

Theorem 5.2. (Takeuti (1978)). If u, v are compatible quantum real numbers,
corresponding to self-adjoint operators, AA,, respectively,

Ay = //\d E() A= //\d E.(A),



2592 Titani and Kozawa

then

Ao = [ 10Eu0) = [ 10E0) + [ 1dE0) = A+ A,
Auy = /Ad Euv(h) = /Ad E.(\) - /Ad E() = A - A,

A complex number is defined i P(H) as a pair(u, v) of compatible real
numbersau, v. (u, v) is denoted byl + iv, wherei2 = —1. If u, v are compatible
guantum real numbers, thert-iv is said to be ajuantum complex numheh
quantum complex number represents a normal operatét.0iVe denote the set
of quantum complex numbers lgyin v P(H),

6. PROPOSITIONS, SYMMETRIES, AND STATES IN Vv P(H)

Quantum propositions are represented as projections which are self-adjoint
operators acting on a Hilbert spalde hence represented as quantum real numbers.
Symmetries are represented as unitary operators, and states of the quantum system
are represented as unit vectorstéf The probability of obtaining the answer
“yes” by carrying out a measurement corresponding to propostiam initial
state represented layis || pal|?. If || pal|? # 0, then the state immediately after
the experiment is represented %

6.1. Representation of Quantum Propositions iV P(H)

A projectionp € P(H) is a self-adjoint operator,
p= /,\d E(A) =0-E(0)+1-(E(1) — E(0)) = E(0)".

Thus, the quantum real numbgrcorresponding to propositiopis given by

0, r <o,
) =\/E() = { E() = p*, 0<r<1,
s<r _’]_, 1< r,

Theorem 6.1. If p € P(H), thenp is a quantum real number such that
D = i = 9 = (") 1 = .
[p<1l=[pZ01" =p
Conversely, if a positive quantum real u i) satisfies
[u=i] = [u=0]* = p,
q q

thenfu = p] = 1.
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Proof: Letp e P(H). Itis obvious thaf is a positive quantum real number and

5 5 1, r<QO,

(PI) =g [F € 1) AQAF) =g [T € B = [ p, 0<r <1,
1, 1<,
5 . 1, r<Q,

(B(F) —q [T € O] A (OF) —q [T € PI) = l pt, 0<r <1,
1, 1<r.

Therefore, ﬁ? 1] = [ﬁ? 0]+ = p.
Conversely, assume thais a positive quantum real number such that

[u=1] =[u=01"=p.
q q

Since [u C Q]I =1, we may assume th@u = {F | r € Q}. It suffices to show
that

0, r«0,
uf)=1{ pt, 0<r <1,
1, 1<r.
1. Ifr <0, then

p<(u(F) —q [F € 1]) = u)* and p* < (u() —q [F € Ol) = u(F)™*.

It follows thatu(f) < (p A p*) = 0.
2. If1<r,then

p<(AF) =q [F eul) =u(F) and p'<(0F) =4 [F € ul) = u(F).

Hence, 1= (p v p*) <u(r).
3. If0<r <1, then

P<UE) —q[F € 1) =u)* and p*<©@F) —q [F € ul) = u().
Hence,p* > u(f) and pt <u(f). It follows thatu(f) = p*.
m

Thus, projectionp € P(H) is represented as a quantum real numbsuch
that

[u=1] =[u=01"=p.
q q

Definition 6.1.(in VP(M). A quantum real numbar such that

u=1< (u=0)*
q q
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is called aproposition and the set of propositions will be denotede/W).

p(H) %y e m | (u=1) < @=0y)

That is,
D(P(H) ={plpeP(H)}, (P(H)(P) =1 for pe P(H)
Lemma 6.1.

[P(H)={0,1}] =1

q
Proof: If p e P(H), then
P(H)(P) = 1= I[Iﬁﬁill \/I[f>?1]|L = I[Iﬁjill Vl[lf)?é]ISIIf) g{éyi}]l-
Sinced = 0 € P(H) and1 € P(H),
[p 0 <[p=0vp=il<[peP(H] =1

Forp,qeP(H), p<§ <= G c p. Hence,
Lemma6.2. Forp,qe P(H), p<q < [p<q]l =1
Proof: Letr e@Q. If r<0 or I<r, then [F € p] =[F € 4]. If O<r <1,

then

It follows that

p<q & WreQ([f eq—->repl=1) < [p<fl=1

Lemma 6.3. For AC P(H), [\ ca P = VAl = 1.

Proof: \/ ca f)<\7\A is obvious. If \/,.aP<uce P(H), thenu =g for
someq € P(H), and\/ A<q. Hence,\/ A< \/ ca P O

Lemma6.4. For p,q e P(H),
[p?ieq?éﬂzl — p=q-
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Proof: It follows from the fact that p = [ﬁ?i]l and gt = [q?i]l =
[q?é]. O

Definition 6.2. For p € P(H),

| def—
pt=pt

Definition 6.3.(in VP(H)). u, ve P(H) are said to berthogonalif

u=1-v=0.
q q

ue P/(ﬁ) is called aratomif
vbeP(H)0 < b<u— b=u).

The set of atoms is denoted Byom.

Atom %€y ¢ B(H) | vb e P(H)O < b<u— b= u)}.
Axiom 12.
Al: Vbe P/(ﬁ)zl pe Atom (p<b).
A2: Vb, qu@)VpeAtom [(pAb=0)A(b<qg< pVvb) — (b=q)]
(A1) and (A2) are valid irv P(H).

6.2. SubuniverseV B of vV P(H)

From now on we fix a basi&g }ic; of H and denote the projection on the
1-dimensional subspace contain@dy p;, for eachi € I. Letil = {U, },cr be
the set of all unitary opertors acting &h.

For each unitary operatds,, {U, piUSlic generates a complete Boolean
subalgebra oP(H), which we denote by, . The identity mappind, — P(H)
is extended to the identity mapping® — VP, That is, B, -valued universe
VB is a subuniverse of P(H) and

[u=vlg, =[u=v] and [uev]lg, =[uev] (uveV?).

Definition 6.4. For a unitary operatdd € i(, The mapping
oy . p+— UpU*

is an automorphism ofP(H), and is extended to the automorphism of
universe

oy - VvPH) v PH),
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By Theorem 3.2, we have

Theorem 6.2. For each unitary operator Ue 4,

1. oy[u=vV] =[oyu=0yv] and oy[uev] =[oyuecoyv] for
u,v e VPH),

2. If p(ug, ..., uy) is a bounded formula with constantg,u. ., u,, then
oule(ua, ..., un)l = [e(ou(u), ..., ou(un))l-

3. crul[u?v]l = [auu?ouv]l.

Corollary 6.1. If p € P(H) and U € &, then projection p is represented by
quantum real numbep, anday (P) is the quantum real numbey pU* corre-
sponding tary (p) = UpU*.

Proof: ﬂﬁ?i]l = pimplies [ou(ﬁ)?i] = ou(p) = UpU*. O

A quantum complex numbeun +iv represents a normal operator. The
compatible quantum real numbearsandv correspond to self-adjoint operators
A, = [AdEy(r) andA, = [ AdE,()), and there exists a unitary operatdy on
H such that each element of

{Eu(@) | 2 e RFU{E/(}) | 2 € R}
is spanned by a subset g8, 6 }ic; (cf. Halmos, 1951). That is, there exists a
unitary operatol),, € $( such thau +iv € VB .

Lemma 6.5. (Takeuti (1978)). Let u, v be quantum real numbers irf{". If
there is a unitary opertor Y € 4 such that v € V&, then for pe B,

p<|[u?V]I = p-Ai=p-A,

where A and A, are self-adjoint operators on H corresponding to u, v, respec-
tively.

6.3. Representation of Symmetries irv P(H)

A symmetry in the physical system is represented as a unitary operdigr of
which is a normal operator. Hence, each symmetry is represented as a quantum
complex number. The quantum complex humber representing unitary opérator
will be denoted by] . 4 = {U}, er denotes the set of all unitary operators acting on
H. The set of quantum complex numbers representiigV P(H) will be denoted
by i, i.e.,

DiU={UUey}, HU)=1 U e



Quantum Set Theory 2597

Each unitary operatdd € 4l induces an automorphism &f(H),
oy . p— UpU*,

which preserve¥/ and*. oy is extended to an automorphisrg:V P(H) - v P(H)
of universe.

Generally, “f is a mapping ofA to B” in VP in symbolsf : A— B, is
defined as

f:A—> B <d:ef> fCc AxBAVvYae Adbe B({(a,b) € f) A

VacAvb,c e B({a,b) e f A(a,c) e f > b=¢)
A € VP is said to beglobalif A(x) = 1 or A(x) = 0 for eachx € DA. If
A e VP(H) is global, we denote the spt € DA|A(X) = 1} by A.
Lemma 6.6. If A, B € VP are global, and@ is a mappingA — B, then
¢ € VPMH) defined by
Dy = {(x, g())Ix € A}, (X, $(x))) = 1
satisfie ¢ : A — B] = 1. We denotéx, y) € ¢ by p(x) = y.

SinceP/(ﬁ) isglobal,oy : p+— U/pU* is the mapping in V(™) representing
a symmetry associated with unitary operator U.

6.4. Representation of States i P(H)

Definition 6.5. A set{Gj}ic| of mutually orthogonal atoms d?/('ﬁ) is said to be
acomplete system of atorifs\/;_, Gi = |.

Foreach unitary operatbr € 41, {oy (pi)}ic| isacomplete system of atoms. If
¢ is a complex number for eaé¢he |, andU, € &, thenc; is a quantum complex
number inV 8| and{oy, (pi)}ici is a set of mutually compatible quantum real
numbers inv®, hence)";, & - ou, (pi) is a quantum complex number \hB .

Definition 6.6. If {Ci}ici C C, Y ICi|?< oo andU € &, thenu =Y, & -
oy (pi) represents the normal opera)oy,, ¢ - Up;U* (Corollary 6.1). We denote

VYic &2 by Jull.

Theorem 6.3. If {bi}ici,{Ci}ier C C and if U, € &, then quantum complex
numbers) ., b - oy, (Bi) and) ;. G - oy, (fi) are elements of %, and

|:|:ZB‘ -ou, (Pi) = Z(;i ‘UUV(ISi):|:| =1=—b =¢ foreachiel.

iel iel
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Proof: LetU =U,. [Y., bi-ou(pi) = Y., & - ou(pi)] = 1implies

Y bi-ou(p) =) ci-ou(p).

iel iel
Then, by Lemma 6.50y(p;) = UpiU* <[b ?(:i]l. It follows that by = ¢ for
eachce I. O

States of the physical system are represented by unit vectors of Hilbert space
H. Each vectorx € H has expressions of the forin;_, (x, Ug)Ueg for each
unitary operatot). Forx € H andy € T, letX,, be the quantum complex number
i (X, U, &) ou, (fi), which is inV &,

%, = > (x,U,&)-ou, (B)-
iel
x € H will be represented as sed[= {X, }, r 0f quantum complex numbers

indexed byl". Indexed setX, },r means the mapping from check $eto the set
¢ of quantum complex numbers defiendpy— X, . Let

[X] = {%)}yer, Whereg, = Z(x, U,&) - ou, (B).

iel

H, ={X,Ixe H} (yel).

Lemma6.7. Ifx,y e Handy €T, then
[, =%1=1 < [xI=[yl

Proof: LetU =U,. By Theorem 6.3,

[[Z(X,Ue)“-oU(lﬁi) = Z(y,Ue)‘oU(lﬁi)ﬂ=1
iel iel

= (x,Ug)=(y,Ug) Viel
:}X:y

It is obvious that

Lemma6.8. Forx,y e Handce C,

X+y)y =% +9, (X, =¢%, IR, =IxI

wherel[%, | = || 3, (x, Ua ) ou, ()1l = (v 10x, Uy &))"
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Definition 6.7.

f[ def def

x4+ EIx+ vt & a1 Lhex,  npan Ehxr

I[X]1I will be denoted simply by x||.

Definition 6.8.

H d=Ef{[x] | xeH}.

We say k] € H is a state if|x|| = 1.

state®(1x) € Alx) = 1)

If X is a nonzero vector ik, thenﬁ is a state.

2599

Theorem 6.4. For a projection pe P(H), there existg e I' such that p{U,

U icr. ThenP € VB, and

ﬁ' i]/ = (ﬁ)y

Proof: LetU =U,. Itis obvious thatp/{Up;U*}ic; impliesp € B, andp €

VB . Hence,p andX, are compatible.
p-%, =Y (x,U&)- p-ou(p)
iel

> (xUe)-ou(p) = (PX),.

upU-<p

Definition 6.9. p defines the mapping : H — H by
.- def
P[x] =Tpx]

Theorem 6.5. LetU, € i. Foreachie I,

Uye), =ou,(p), and [U,e]l=) (U,a, ¢)el.

jel
Proof:

Uy8), = Y Uy, U,e)ou, (p)) = ou, (H)-

jel
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[U,el, = [Z(Uya, e,-)e,-] => (U,e, ¢)lel.

jel jel
g

Definition 6.10. We denote ] by U[g]. U e i defines the mapping :
H — H by

0131 ©huxt = Yx e)1ueyl.
jel

For the experiment op € P(H) in state f],

[a] = [pa+ p*a] = [pa] +[p-al.
If pa=0orpta=0,then

[a] = IIpall - [pa] + IIp~al - [p*a].
If pa# 0andpta # 0, then

[a] = IIpall - [x] + lIp~al - [y],

where ] = {23 and [y] = l{gizln are states, anlpal? (| p*al?) is the pro-

bability of obtaining “yes” (“no”).

6.5. Applications

We consider the experiment which consists in placing a polarizer in the beam
of photons. When the photons are despatched one by one, this experiment leads
to a plain alternative: either the photon passes through, or it is absorbed. We shall
define the propositiop, by specifying the orientation of the polarizer (the angle
0) and interpreting the passage of a photon as a “yes.” Experiment shows that, to
obtain a photon prepared in such a way that is true,” it is sufficient to consider
the photons which have traversed a first polarizer oriented at this anbét a,
be the state in which a photon has traversed a first polarizer oriented atangle
and let the second polarizer be oriented at aAgl&@hen the probability| pyag |
of “yes” depends only on the difference of the anglés- 6, and is known to be

cog (6’ — ).

The experiment is interpreted W) as follows.
The measurement gy in statea, induces a change of expression of the
state.

[a0] = [Poras] + [(Po) 0]
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where ||pyay||? = cog(p’ — 0) is the probability of “yes” and|(py)*as||? =
Sir?(9’ — 0) is the probability of “no
Let{ao, az} be the fixed basis dfi. If & = 0 andd” = 7, then

[a0] = [pza0] + [p%ao] = (cos%)“[a%] + (cost)Tao].

Since @) = 0-(d5)1 +1-(do)i =0- p5 + 1- Py, wherel is the identity op-
erator, we have
p; <[(@0) =01, and p; <[(do) =1I.
This means that right after the traversing in the stagg the answer forpz is
“yes” with probability 0, that is, the answer is “no,” and the answertnzr)é = po
is “yes” with probability 1.
If 6 = % and6’ = %, then| pjay 12 = 3, () @ > = 3, and

fas] = (5 ) Tas] + (5 )t

where pz] = [«/Ep%a%] and [ag] = [ﬁ(p%)La%] are states. Thus,

oG] 0[]

This means that right after the traversing in the statg],[the answer for
Pz is “yes” with probability%, and “no” with probability%. The states right after
measurement isaf ] or [ao], according to “yes” or “no.”
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