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Quantum Set Theory
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The complete orthomodular lattice of closed subspaces of a Hilbert space is consid-
ered as the logic describing a quantum physical system, and called aquantum logic.
G. Takeuti developed a quantum set theory based on the quantum logic. He showed
that the real numbers defined in the quantum set theory represent observables in quan-
tum physics. We formulate the quantum set theory by introducing a strong implication
corresponding to the lattice order, and represent the basic concepts of quantum physics
such as propositions, symmetries, and states in the quantum set theory.
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1. INTRODUCTION

The formulation of quantum physics in terms of lattice theory was first intro-
duced by Birkhoff and von Neumann (1936). In the setting, a system of quantum
physics is represented as a Hilbert space whose elements correspond to physical
states while propoistions in quantum physics correspond to closed subspaces of
the Hilbert space. A proposition of quantum physics is considered as a closed sub-
space of a Hilbert space consisting of states in which the proposition is certainly
true. Thus, complete orthomodular lattice of closed subspaces of a Hilbert space
may be considered as the logic describing a quantum physical system.

Let H be a Hilbert space consisting of physical states, andP(H ) be a complete
orthomodular lattice consisting of all closed linear subspaces ofH , or equivalently,
consisting of all projections onH . P(H ) is called aquantum logic. The set theory
developed in theP(H )-valued universeV P(H ) by using the quantum logic is called
aquantum set theory.

P(H )-valued universeV P(H ) is constructed by induction as follows:

V P(H )
α =

{
u | ∃β < α∃Du ⊂ V P(H )

β (u : Du→ P(H ))
}

,
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V P(H ) =
⋃
α∈On

V P(H )
α .

G. Takeuti developed in Takeuti (1981) a quantum set theory inV P(H ) based
on the quantum logicP(H ). He showed in Takeuti (1978) that real numbers defined
in the language of the quantum set theory represent self-adjoint operators acting on
H . That is, real numbers inV P(H ) (seen from outsideV P(H )) represent observables
in quantum theory.

We use the notation→
q

,=
q

, ∈
q

instead of→,=, ∈ in Takeuti (1981), where

ϕ→q ψ
def⇐⇒ ϕ⊥ ∨ (ϕ ∧ ψ).

The equality=
q

and membership relation∈
q

corresponding to the quantum
implication→q are interpreted inV P(H ) by

[[u=
q

v]] =
∧

x∈Du

(u(x)→q [[x∈
q
v]]) ∧

∧
x∈Du

(v(x)→q [[x∈
q
u]]),

[[x∈
q
v]] =

∨
x∈Dv

[[u=
q

x]] ∧ v(x),

where [[A]] is the truth value of sentenceA in V P(H ).

Operator→q is an implication in the sense that

[[ϕ ∧ (ϕ→q ψ)]] ≤ [[ψ ]] .

But, unfortunately,

[[ϕ ∧ ψ ]] ≤ [[ξ ]] does not imply [[ϕ]] ≤ [[ψ →q ξ ]],

unless [[ϕ]] and [[ψ ]] are compatible, because of nondistributivity of latticeP(H ).
It follows that the transitivity of=

q
:

(u=
q

v) ∧ (v=
q

w)→q (u=
q

w)

is too restrictive to develop a set theory. That is, equality axioms for=
q

are not valid inV P(H ).
In order to restore the equality axioms, we introduce stronger implication→

calledbasic implication, which represents the lattice order:

(a→ b) =
{

1 if a ≤ b

0 otherwise,

where 1, 0 are the top and bottom of the complete lattice.
In Titani (1999), we formulated a lattice-valued logic and a lattice-valued

set theory, by introducing the basic implication→. The lattice-valued logic is the
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logical counterpart of complete lattice. The completeness of the lattice-valued logic
was proved in Takano (2002). For an arbitrary complete latticeL, theL-valued
universeVL is a model of lattice-valued set theory based on the lattice-valued
logic. SinceP(H ) is a complete lattice,V P(H ) is a model of the lattice-valued set
theory. The quantum set theory onV P(H ) is formulated as a lattice-valued set
theory with the quantum implication→q as well as the basic implication→.

Remark 1. The basic implication is not the only interpretation of implication for
lattice-valued logic. For example, letL be an orthomodular complete lattice andZ
be the center ofL, that is,Z be the complete Boolean subalgebra which consists
of all a ∈ L distributive over all subsets ofL.

Z =
{

a ∈ L | ∀{bα}⊂L
(

a ∧
∨
α

bα=
∨
α

(a∧ bα), a∨
∧
α

bα =
∧
α

(a∨ bα)

)}
ThenL is also a model of lattice-valued logic with the following interpretation of
implication onL:

(a→ b) =
∨
{z ∈ Z | a ∧ z≤ b}.

Elements of the Boolean-valued subuniverseV2 ⊂ V P(H ) are called check
sets. The set of rational numbers defined in the universeV P(H ) is a check seťQ
corresponding to the setQ of rational numbers. Areal numberis defined inV P(H )

as an upper partu of a Dedekind cut of rational numberšQ. Complex numbers
are defined inV P(H ) as pairs of compatible real numbers. An elementu of V P(H )

such that “u is a real (complex) number” holds inV P(H ), is called aquantum real
(complex) number.

Each proposition, which is considered as a projection onH , is represented
as a quantum real numberu such that [[u=

q
1̌∨ u=

q
0̌]] = 1. A symmetry, which

is considered as a unitary operator onH , is represented as a quantum complex
number. A state of the physical system, which is considered as a unit vector inH ,
is represented as a set of quantum complex numbers indexed by unitary operators
on H .

In Section 2, 3, we review proposition system in Piron (1976) and lattice-
valued set theory in Titani (1999). A quantum set theory is formulated in Section 4.
Real and complex numbers inV P(H ), that is, quantum real and complex numbers,
are discussed in Section 5. Then, in Section 6, physical concepts such as proposi-
tions, symmetries, and states are represented in the universeV P(H ).

2. PRELIMINARIES

In this section, we review a formulation of quantum physics by using the
language of lattice, in Piron (1976).
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2.1. Proposition System

Complete latticeL satisfying the following axoims (C), (P), (A) is called a
proposition system, and elements ofL are calledpropositions. The top and bottom
elements of complete latticeL will be denoted by 1 and 0, respectively.∨

L = 1,
∨
∅ = 0

(C): For eachc ∈ L there exists a unique orthocomplementc⊥ ∈ L such that
(C1) c⊥⊥ = c
(C2) c∨ c⊥ = 1, and c∧ c⊥ = 0
(C3) b ≤ c =⇒ c⊥ ≤ b⊥ for ∀b ∈ L

(P): If b, c ∈ L andb ≤ c, then the sublattice ofL generated by{b, b⊥, c, c⊥} is a
distributive lattice.

A complete lattice satisfying (C) and (P) is called acomplete orthomodular lattice.

If b 6= c andb ≤ c, one say thatc covers bwhen

b ≤ x ≤ c =⇒ x = b or x = c.

A proposition which covers 0 is called anatom.
(A): ( A1) If b is a proposition different from 0, there exists an atomp ≤ b.

(A2) If p is an atom and ifp∧ b = 0, thenp∨ b coversb.

A system of quantum physics is represented as a proposition system. LetL be
the proposition system. An observable is defined as a correspondence between the
propositions associated with the measuring apparatus and propositions associated
with the physical system. Thus, ac-morphism of a complete Boolean algebra into
the proposition system is called anobservable, wherec-morphismis a mappingσ
of a complete orthocomplemented latticeL1 into a complete orthocomplemented
latticeL2 such that

1. σ (
∨

i bi ) =
∨

i (σbi ),
2. b⊥c =⇒ σb⊥σc.

2.2. Compatibility

Definition 2.1. Elementsb, c of a complete orthomodular latticeL are said to
be compatible, in symbolsc

˚
b, if the sublattice generated by{b, b⊥, c, c⊥} is

distributive. Forb ∈ L and a subsetA of L,

b
˚
A

def⇐⇒ ∀a ∈ A(b
˚
a).

Theorem 2.1. (Piron (1976) pp. 25–27). For elements b,c of a complete ortho-
modular latticeL, the following conditions are equivalent.
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1. b,c are compatible
2. (b∧ c) ∨ (b⊥ ∧ c) ∨ (b∧ c⊥) ∨ (b⊥ ∧ c⊥) = 1
3. (b∧ c) ∨ (b⊥ ∧ c) = c
4. (b∨ c⊥) ∧ c = b∧ c

Theorem 2.2. (Piron (1976) p. 27). For a subset C of a complete orthomodular
latticeL and b∈L, if b

˚
C then∨

c∈C

(b∧ c) = b∧ (
∨

C),
∧
c∈C

(b∨ c) = b∨ (
∧

C).

Theorem 2.3. (Piron (1976) p. 28). For a subset C of a complete orthomodular
latticeL and b∈ L, if b

˚
C then

b
˚

∨
C and b

˚

∧
C.

Definition 2.2.LetL be a complete orthomodular lattice. Fora, b ∈ L,

(a→q b)
def= a⊥ ∨ (a ∧ b).

Then we have

Theorem 2.4. (Takeuti (1981) p. 305). If a, b, c ∈ L and a
˚
c, then

c ≤ (a→q b) ⇐⇒ a ∧ c ≤ b.

2.3. Direct Union

Definition 2.3.Direct union
∨
α Lα of a family {Lα} of proposition systems is the

complete orthocomplemented lattice consisting of families{xα} wherexα ∈ Lα
with the ordering defined by

{xα} ≤ {yα} def⇐⇒ ∀α(xα ≤ yα)

and orthocomplementation defined by

{xα}⊥ def⇐⇒ {x⊥α }.

Theorem 2.5. (Piron (1976) p. 34). In the direct union
∨
α Lα of a family{Lα}

of proposititon systems,

{xα}˚{yα} if and only if ∀α(xα˚
yα)
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Definition 2.4.A proposition systemL is said to beirreducibleif its center consists
of 0 and 1, i.e.

L is irreducible
def⇐⇒ Z = {0, 1},

where the centerZ of L is the set of elements compatible with all elements ofL.

Z = { z ∈ L | ∀a ∈ L(z
˚
a)}.

Theorem 2.6. (Piron (1976) p. 35). Every proposition systemL is the direct
union of irreducible proposition systems.

2.4. Standard Proposition SystemP(H )

A system of quantum physics is represented as a Hilbert space whose el-
ements correspond to physical states. Propositions of the quantum physics are
represented as closed subspaces of the Hilbert space, which forms a proposition
system. Proposition systemP(H ) consisting of closed subspaces of a separable
Hilbert spaceH , or equivalently consisting of all projections onH is called a
standard proposition system. In what follows we deal with a standard proposition
systemP(H ) unless otherwise mentioned.

3. LATTICE-VALUED SET THEORY

Proposition systemP(H ) is a complete lattice. Thus, a lattice-valued set
theory based on lattice-valued logic is developed inP(H )-valued universeV P(H )

(Titani, 1999). In Section 3.1, the lattice-valued set theory is reviewed briefly.

3.1. Lattice-Valued Universe

Let L be any complete lattice.L-valued universeVL of lattice-valued set
theory is constructed by induction:

VLα = {u | ∃β < α∃Du ⊂ VLβ (u : Du→ L)},
VL =

⋃
α∈On

VLα .

The leastα such thatu ∈ VLα is called therank of u. On the complete latticeL,
operations→ and¬ are defined by

(a→ b)
def=

∨
{ x ∈ 2 | a ∧ x ≤ b } =

{
1, if a ≤ b,

0, otherwise,
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¬a
def= (a→ 0)=

∨
{ x ∈ 2 | a ∧ x ≤ 0} =

{
1, if a = 0,

0, otherwise.

Formulas of lattice-valued set theory are constructed from atomic formula of the
form u = v or u ∈ v by logical operators∧, ∨, ¬,→, ∀, ∃. Atomic formulas are
interpreted inVL as

[[u = v]] =
∧

x∈Du

(u(x)→ [[x ∈ v]]) ∧
∧

x∈Dv

(v(x)→ [[x ∈ u]]),

[[u ∈ v]] =
∨

x∈Dv

(v(x) ∧ [[u = x]]) .

The logical operators are interpreted as the corresponding lattice opertors onL.
The following abbreviations will be used.

hϕ
def⇐⇒ ((ϕ→ ϕ)→ ϕ).

Then

[[hϕ]] =
{

1 if [[ϕ]] = 1,

0 otherwise.

We say an elementp of L is h-closed if p= hp.

Lemma 3.1. (Titani (1999)). For every u, v ∈ VL,

1. [[u = v]] is h-closed,
2. [[u = v]] is distributive over any subset{bk}k ofL :

(
∨
k

bk) ∧ [[u = v]] =∨
k

(bk ∧ [[u = v]]) .

Lemma 3.2. (Titani (1999)). For every u, v, w ∈ VL,

1. [[u = v]] ∧ [[v = w]] ≤ [[u = w]]
2. [[u ∈ w]] ∧ [[u = v]] ≤ [[v ∈ w]]
3. [[w ∈ u]] ∧ [[u = v]] ≤ [[w ∈ v]]

Definition 3.1.

∀x∈uϕ(x)
def⇐⇒ ∀x(x ∈ u→ ϕ(x)), ∃x∈uϕ(x)

def⇐⇒ ∃x(x ∈ u ∧ ϕ(x)).

Lemma 3.3. (Titani (1999)). For a formula ϕ(a),

[[∀x∈uϕ(x)]] =
∧

x∈Du

[[x ∈ u→ ϕ(x)]], [[ ∃x∈uϕ(x)]] =
∨

x∈Du

[[x∈u ∧ ϕ(x)]] .
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Theorem 3.1. (Titani (1999)). The following A1–A11 are valid in VL.

A1.Equality: ∀u∀v(u = v ∧ ϕ(u)→ ϕ(v)).

A2.Extensionality:∀u, v(∀x(x ∈ u↔ x ∈ v)→ u = v).

A3.Pairing: ∀u, v∃z(∀x(x ∈ z↔ (x = u ∨ x = v))).

The set z satisfying∀x(x ∈ z↔ (x = u ∨ x = v)) is denoted by{u, v}.
A4.Union: ∀u∃z(∀x(x ∈ z↔ ∃y∈u(x ∈ y))).

The set z satisfying∀x(x ∈ z↔ ∃y ∈ u(x ∈ y)) is denoted by
⋃

u.

A5.Power set:∀u∃z(∀x(x ∈ z↔ x ⊂ u)) where x⊂ u
def⇐⇒ ∀y(y ∈ x→

y ∈ u). The set z satisfying∀x(x ∈ z↔ x ⊂ u) is denoted byP(u).

A6. Infinity: ∀u(∃x(x ∈ u) ∧ ∀x∈u∃y ∈ u(x ∈ y)).

A7.Separation:∀u∃v(∀x(x ∈ v↔ x ∈ u ∧ ϕ(x))).
The set v satisfying∀x(x ∈ v↔ x ∈ u ∧ ϕ(x)) is denoted by{x ∈ u | ϕ(x)}.

A8.Collection:∀u∃v(∀x∈u∃yϕ(x, y)→ ∀x ∈ u∃yh(y ∈ v ∧ ϕ(x, y)).

A9.∈-induction: ∀x(∀y∈xϕ(y))→ ϕ(x))→ ∀xϕ(x).

A10. Zorn: ∀x ∈ uh(x ∈ u) ∧ ∀u(Chain(v, u)→⋃
v ∈ u)→ ∃z Max(z, u),

where

Chain(v, u)
def⇐⇒ v ⊂ u ∧ ∀x, y∈v(x⊂y ∨ y⊂x),

Max(z, u)
def⇐⇒ z∈u ∧ ∀x ∈ u(z⊂x→ z= x).

A11. Axiom of ♦ : ∀u∃z∀t(t ∈ z↔ ♦(t ∈ u)),where♦ϕ def⇐⇒ (ϕ→⊥)→⊥
The set z satisfying∀t(t ∈ z↔ ♦(t ∈ u)) is denoted by♦u.

Definition 3.2. u∈ VL is said to bedefiniteif u(x) = [[x ∈ u]] for all x ∈ Du.

Lemma 3.4. For any u∈ VL there exists a definte v∈ VL such that
[[u = v]] = 1.

Proof: For u ∈ VL, let

Dv = Du, v(x) = [[x ∈ u]] .

Thenv is definte and [[u = v]] = 1. ¤

In what follows we may assume that eachu ∈ VL is definite.
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3.2. Embedding of Lattice-Valued Universes

Let L1 and L2 be complete lattices. We denote the top
∨
Li of Li by

1Li (i = 1, 2). An embeddingσ of L1 intoL2 is said to beunital if σ (1L1) = 1L2,
andsup-preservingif σ (

∨
A) =∨a∈A σ (a) for A⊂L1.

If σ :L1→L2 is a unital sup-preserving embedding, then

a ≤ b ⇐⇒ σ (a) ≤ σ (b) and σ (a→ b) = (σ (a)→ σ (b)) for a, b ∈ L1.

Definition 3.3. A unital sup-preserving embeddingσ :L1→L2 is extended to
embeddingσ :VL1→VL2 defined by

{
D(σu) = {σ x | x ∈ Du}
( σu)(σ x) =∨{σ [[x′ ∈ u]]L1 | x′ ∈ Du, [[σ x = σ x′]]L2 = 1} (3.1)

where [[ ]]Li is the truth value in VLi for i = 1, 2. The mapping
σ : VL1 → VL2 is called theembedding associated withσ : L1→ L2.

Theorem 3.2. Let σ :L1→L2 be a unital sup-preserving embedding, and
σ :VL1→VL2 be the embedding associated withσ :L1→L2. Then for u, v ∈ VL1,

σ [[u = v]]L1 = [[σu = σv]]L2 and σ [[u ∈ v]]L1 = [[σu ∈ σv]]L2.

Proof: We assume the theorem forx, y ∈ VL1
< α . For the first part, it suffices to

show that

[[σu = σv]]L2 = 1 ⇐⇒ [[u = v]]L1 = 1.

By the induction hypothesis,

[[σ x = σ x′]]L2 = 1 ⇐⇒ [[x = x′]]L1 = 1 for x, x′∈Du.

It follows that (σu)(σ x) = σ [[x ∈ u]]L1 for x ∈ Du. If [[ u = v]] = 1, then forx ∈
Du,

(σu)(σ x) = σ [[x ∈ u]]L1 ≤ σ [[x ∈ v]]L1

= σ
( ∨

y∈Dv

[[x = y]] ∧ v(y)

)
≤
∨

y∈Dv

[[σ x = σ y]]L2 ∧ (σv)(σ y)

≤ [[σ x ∈ σv]]L2 for x∈Du.

Symmetrically, (σv)(σ x) ≤ [[σ x ∈ σu]]L2 for x ∈ Dv. Therefore,
[[σu = σv]]L2 = 1. Conversely, if [[σu = σv]]L2 = 1, then forx ∈ Du,

σ [[x ∈ u]]L1 = (σu)(σ x) ≤ [[σ x ∈ σv]]L2 = σ [[x ∈ v]]L1,

.·.[[x ∈ u]]L1 ≤ [[x ∈ v]]L1.
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Symmetrically, [[x ∈ v]]L1 ≤ [[x ∈ u]]L1 for x ∈ Dv. Therefore, [[u = v]]L1 = 1.
Thus,

σ [[u = v]]L1 = [[σu = σv]]L2 (3.2)

By using (3.2) we have

σ [[u ∈ v]]L1 =
∨

x∈Dv

(σ [[u = x]]L1 ∧ σ [[x ∈ v]]L1)

=
∨

x∈Dv

([[σu = σ x]]L2 ∧ (σu)(σ x)) = [[σu ∈ σv]]L2.

¤

Corollary 3.1. Let σ :L1→L2 be a unital sup-preserving embedding such that
σ (p∧ q) = σp∧ σp for p, q∈L1, andσ :VL1→VL2 be the embedding associ-
ated withσ :L1→L2. If ϕ(x1, x2, . . . , xn) is a bounded formula of lattice-valued
set theory, and u1, u2, . . . , un ∈ VL1, then

σ [[ϕ(u1, u2, . . . , un)]]L1 = [[ϕ(σu1, u2, . . . , σun)]]L2.

Proof: By induction on the complexity ofϕ. Since other cases are obvious, we
prove only the case thatϕ(u1, u2, . . . , un) is of the form∀x∈uϕ(x, u1, u2, . . . , un).
If {pi } is a set ofh-closed formulas, thenσ (

∧
i pi ) =

∧
i σ (pi ). Hence,

σ [[∀x∈uϕ(x, u1, u2, · · · , un)]] = σ
( ∧

x∈Du

[[x ∈ u→ ϕ(x, u1, u2, · · · , un)]]

)
=

∧
x∈Du

σ [[x ∈ u→ ϕ(x, u1, u2, · · · , un)]])

=
∧

x∈Du

[[σ x ∈ σu→ ϕ(σ x, σu1, σu2, · · · , σun)]])

= [[ ∀x∈σu(x, σu1, σu2, · · · , σun)]]) .

¤

3.3. Check Sets

Let V be a universe of ZFC in which lattice-valued universeVL is
constructed. The subset2(= {1, 0}) of L is a Boolean subalgebra ofL, and the
universeV is isomorphic toV2.

Definition 3.4. Elements of the subuniverseV2 of VL are calledcheck sets.
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The check set corresponding tou ∈ V is denoted by̌u. The check seťu is
defined by {

Dǔ = {x̌ | x ∈ u}
ǔ(x̌) = 1

“x is a check set,” in symbols ck(x), can be expressed in the language of lattice-
valued set theory (Titani, 1999):

ck(x) ⇐⇒ ∀t [t ∈ x↔ h(t ∈ x) ∧ ck(t)].

Identity mappingI : 2→ L is a unital sup-preserving embedding, andV is em-
bedded inVL, by

u 7→ ǔ ∈ V2 ⊂ VL (u ∈ V).

By Corollary 3.1 we have

Theorem 3.3. If ϕ(u1, . . . , un) is a bounded sentence of ZF set theory with
constants u1, . . . , un in V , then

ϕ(u1, . . . , un) ⇐⇒ [[ϕ(ǔ1, . . . , ǔn)]] = 1.

3.4. P(H )-Valued UniverseV P(H )

The proposition systemP(H ) is a complete lattice, andP(H )-valued universe
V P(H ) is constructed as a lattice-valued universe. G. Takeuti developed a quantum
set theory inV P(H ) by using unary operation⊥ as negation, and implication→q

defined by

ϕ→q ψ
def⇐⇒ ϕ⊥ ∨ (ϕ ∧ ψ).

→q will be called quantum implicationto distinguish from the basic implica-
tion→. Equality=

q
and membership relation∈

q
corresponding to the quantum

implication→q are defined by

u=
q

v
def⇐⇒ ∀x(x ∈ u→q x ∈

q
v) ∧ ∀x(x ∈ v→q x ∈

q
u)

u∈
q

v
def⇐⇒ ∃(x ∈ v ∧ u=

q
x).

By equaity axiom we have

Lemma 3.5. For u, v ∈ V P(H ), [[u = v]] ≤ [[u=
q

v]] and [[u ∈ v]] ≤ [[u∈
q

v]] .
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4. A FORMULATION OF QUANTUM SET THEORY

In this paperquantum logicis formulated as a lattice-valued logic onP(H )
with new logical operator⊥.

4.1. Language of Quantum Set Theory

Primitive symbolsare:

1. Indivdual variables:x, y, z, . . .
2. Predicate constants:=, ∈,
3. Logical symbols:∧, ∨,→, ¬,⊥, ∀, ∃.
4. Parentheses: (,)

Atomic formaulasare expressions of the formt1 = t2 or t1 ∈ t2 with terms
t1, t2. Formulasare constructed from atomic formulas, by using the logical sym-
bols. To denote formulas, we use

ϕ, ψ, ξ, . . . , ϕ(x), . . . .

Definition 4.1. h-closed formulasare defined inductively by

1. A formula of the formϕ→ ψ or¬ϕ is h-closed.
2. If formulasϕ andψ are h-closed, thenϕ ∧ ψ, ϕ ∨ ψ, ¬ϕ andϕ⊥ are

h-closed.
3. If a formulasϕ(x) is ah-closed formula with free variablex, then∀xϕ(x)

and∃xϕ(x) areh-closed.
4. h-closed formulas are only those obtained by 1–3.

We use0,1,5,3, . . . to denote finite sequences of formulas;ϕ, ψ , . . .
to denoteh-closed formulas; and0,1,5,3, . . . to denote finite sequences of
h-closed formulas.

A formal expression of the form0 ⇒ 1 is called asequent. The inference
rules of the quantum logic are obtained from rules of lattice-valued logic in Titani
(1999) by adding axioms for orthogonalization⊥.

Axiom schema of lattice-valued logic: ϕ ⇒ ϕ

Structural rules:

Thinning:
0 ⇒ 1

ϕ, 0 ⇒ 1

0 ⇒ 1

0 ⇒ 1, ϕ

Contraction:
ϕ, ϕ, 0 ⇒ 1

ϕ, 0 ⇒ 1

0 ⇒ 1, ϕ, ϕ

0 ⇒ 1, ϕ

Interchange:
0, ϕ, ψ,5⇒ 1

0, ψ, ϕ,5⇒ 1

0 ⇒ 1, ϕ, ψ,3

0 ⇒ 1, ψ, ϕ,3



P1: JLS

International Journal of Theoretical Physics [ijtp] pp1009-ijtp-474205 November 18, 2003 13:47 Style file version May 30th, 2002

Quantum Set Theory 2587

Cut:
0 ⇒ 1, ϕ ϕ,5⇒ 3

0,5⇒ 1,3

0 ⇒ 1, ϕ ϕ,5⇒ 3

0,5⇒ 1,3

0 ⇒ 1, ϕ ϕ,5⇒ 3

0,5⇒ 1,3

Logical rules:

¬ :
0 ⇒ 1, ϕ

¬ϕ, 0 ⇒ 1

0 ⇒ 1, ϕ

¬ϕ, 0 ⇒ 1

ϕ, 0 ⇒ 1

0 ⇒ 1, ¬ϕ
ϕ, 0 ⇒ 1

0 ⇒ 1, ¬ϕ

∧ :
ϕ, 0 ⇒ 1

ϕ ∧ ψ, 0 ⇒ 1

ψ, 0 ⇒ 1

ϕ ∧ ψ, 0 ⇒ 1

0 ⇒ 1, ϕ 0 ⇒ 1, ψ

0 ⇒ 1, ϕ ∧ ψ
0 ⇒ 1, ϕ 0 ⇒ 1, ψ

0 ⇒ 1, ϕ ∧ ψ

∨ :
ϕ, 0 ⇒ 1 ψ, 0 ⇒ 1

ϕ ∨ ψ, 0 ⇒ 1

0 ⇒ 1, ϕ

0 ⇒ 1, ϕ ∨ ψ
0 ⇒ 1, ψ

0 ⇒ 1, ϕ ∧ ψ
ϕ, 0 ⇒ 1 ψ , 0 ⇒ 1

ϕ ∨ ψ , 0 ⇒ 1

→:
0 ⇒ 1, ϕ ψ, π ⇒ 3

(ϕ→ ψ), 0, π ⇒ 1,3

ϕ, 0 ⇒ 1, ψ

0 ⇒ 1, (ϕ→ ψ)

∀ :
ϕ(t), 0 ⇒ 1

∀xϕ(x), 0 ⇒ 1

0 ⇒ 1, ϕ(a)

0 ⇒ 1, ∀xϕ(x)

0 ⇒ 1, ϕ(a)

0 ⇒ 1, ∀xϕ(x)

wheret is any term wherea is a free variable which does
not occur in the lower sequent.

∃ :
ϕ(a), 0 ⇒ 1

∃xϕ(x), 0 ⇒ 1

ϕ(a), 0 ⇒ 1

∃xϕ(x), 0 ⇒ 1

0 ⇒ 1, ϕ(t)

0 ⇒ 1, ∃xϕ(x)

wherea is a free variable which does wheret is any term
not occur in the lower sequent.

The above-mentioned are inference rules of lattice-valued set theory. For
quantum logic, we postulate the following (C) and (P) corresponding orthomodu-
larity of proposition system.

C: (C1) ϕ ⇐⇒ ϕ⊥⊥

(C2) ⇒ ϕ ∨ ϕ⊥, ϕ ∧ ϕ⊥ ⇒
(C3) (ϕ→ ψ)⇒ ψ⊥ → ψ⊥
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P: (ϕ→ ψ), ψ ⇒ ψ ∧ ϕ, ψ ∧ ϕ⊥.

The property (A) of proposition system is postulated as nonlogical axiom
A12 in Section 6.1.

Definition 4.2. Formulasϕ andψ are said to becompatible, in symbolsϕ
˚
ψ , if

ϕ→ (ϕ ∧ ψ) ∨ (ϕ ∧ ψ⊥).

4.2. Nonlogical Axioms of Quantum Set Theory

The axioms A1–A11 of lattice-valued set theory in Theorem 3.1 are valid in
V P(H ). We adopt those A1–A11 and additional axiom A12 as nonlogical axioms of
quantum set theory. Thus, theorems of lattice-valued set theory are valid inV P(H ).

5. REAL AND COMPLEX NUMBERS IN V P(H )

The setN of all natural numbers is constructed from the empty set by the
successor functionx 7→ x ∪ {x}. Integers are constructed as equivalence classes
of pairs of natural numbers, and rational numbers as equivalence classes of pairs of
integers. The real numbers are defined as upper parts of Dedekind cuts of rational
numbers. Complex numbers are defined as pairs of real numbers. We denote the
set of all integers, rational numbers, real numbers, and complex numbers in the
universeV of classical set theory ZFC, byZ,Q, R, andC, respectively.

5.1. Definition of Quantum Real Numbers

It is known that the sets of all natural numbers, integers, and rational numbers
defined in a lattice-valued set theory coincide with check setsŇ, Ž, Q̌ correspond-
ing toN, Z,Q, respectively. Upper part of Dedekind cut is a subsets ofQ̌, which
is not necessarily a check set. “u is a subset of̌Q,” in symbolsu ⊂ Q̌, is defined
by

u ⊂ Q̌ def⇐⇒ ∀x(x ∈ u→ x ∈ Q̌).

Lemma 5.1. If [[u ⊂ Q̌]] = 1 in V P(H ), then there exists v in VP(H ) such that

Dv = { ř | r ∈ Q } = DQ̌ and [[u = v]] = 1.

Proof: Note that [[x = y]] ∈ 2 and [[x = y]] ∧∨i ai =
∨

i ([[x = y]] ∧ ai ) for
∀{ai } ⊂ Q. Definev by

Dv = { ř | r ∈ Q }, v(ř ) = [[ ř ∈ u]] for r ∈ Q.
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If x ∈ Du,

u(x) 6 [[x ∈ Q̌]] ∧ [[x ∈ u]] =
∨
r∈Q

([[x = ř ]] ∧ [[x ∈ u]])

=
∨
r∈Q

([[x = ř ]] ∧ [[ ř ∈ u]]) ≤ [[x ∈ v]]

Therefore, [[v = u ⊂ Q̌]] = 1. ¤

In what follows, “u is a subset of̌Q”, in symbolsu ⊂ Q̌ means thatDu =
{ ř | r ∈ Q̌ } and [[u ⊂ Q̌ ]] = 1, and the power set of̌Q is denoted byP(Q̌), i.e.,

P(Q̌) = { x | x ⊂ Q̌ }.

Definition 5.1.(in V P(H )). u ∈ P(Q̌) is said to be areal number, if

(D1) ∃r∈Q̌(r∈u) ∧ ∃r ∈ Q̌(r∈u)⊥

(D2) ∀r∈Q̌ ((r ∈ u)←→ ∃s∈Q̌((s < r ) ∧ (s ∈ u))
)

Lemma 5.2. If [[u is a real number]] = p 6= 0, then there exists a complete
Boolean subalgebra B of P(H ) such that{p} ∪ {[[ ř ∈ u]] |r ∈ Q} ⊂ B.

Proof: If s, t∈Q ands6 t , then

[[∀r ∈ Q̌(r ∈ u)]] 6 [[ š ∈ u]] 6 [[ ť ∈ u]] 6 [[∃r ∈ Q̌(r ∈ u)]]

by (D2). It follows that

M = {[[∃r∈Q̌(r ∈ u)]], [[ ∀r∈Q̌(r ∈ u)]]
} ∪ {[[ ř ∈ u]] | r ∈ Q}

is linearly ordered. LetB be the subalgebra ofP(H ) generated byM . B is a
complete Boolean subalgebra ofP(H ) and p ∈ B. ¤

Lemma 5.3. For u ∈ V P(H ), if p = [[u is a real number]] in V P(H ) then there
exists v∈ V P(H ) such thatDv = { ř | r ∈ Q } and

p ≤ [[u=
q

v]] and [[v is a real number]] = 1.

Proof: Let

Dv = { ř | r ∈ Q }, v(ř ) =
{

[[ ř ∈ u]] ∧ p, r 60,
([[ ř ∈ u]] ∧ p) ∨ p⊥, 0 < r .

By Lemma 5.2,{p} ∪ {[[ ř ∈ u]] | r ∈ Q} is compatible. It follows that

p6 [[u=
q

v]] and [[v is a real number]]= 1.
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¤

Definition 5.2. u∈ V P(H ) is called aquantum real numberif

Du = { ř | r ∈ Q }, and [[u is a real number]] = 1.

In V P(H ), the set of all real numbers is denoted byR, i.e.,

DR = {u ∈ V P(H ) | u is a quatum real number}, R(u) = 1

Lemma 5.4. If u, v are quantum real numbers, then

[[u=
q

v]] = 1 ⇐⇒ [[u = v]] = 1.

Proof: It follows from the fact that (a→q b) = 1 ⇐⇒ (a→ b) = 1 for
a, b ∈ P(H ). ¤

5.2. Representation of Quantum Real Numbers

Theorem 5.1. (Takeuti (1978)). If u is a quantum real number, then Eu : R→
P(H ) defined by

Eu(λ) =
∧
λ<r

[[ ř ∈ u]]

is a resolution of the identity. That is, Eu satisfies∧
λ∈R

Eu(λ) = 0,
∨
λ∈R

Eu(λ) = 1, Eu(λ) =
∧
λ<µ

Eu(µ).

Conversely, if E: R→ P(H ) is a resolution of identity and u∈ V P(H ) is defined
by

Du = { ř | r ∈ Q } andu(ř ) =
∨
s<r

E(s)

then u is a quantum real number and Eu = E.

Proof: Let [[u is a real number less]]= 1. Then r 6 s implies [[ř ∈ u]] 6
[[ š ∈ u]]. Hence,Eu(r ) =

∧
r<s

[[ š ∈ u]] > [[ ř ∈ u]]. It follows that

∨
λ∈R

Eu(λ)>
∨
r∈Q

[[ ř ∈ u]] = 1,
∧
λ∈R

Eu(λ)6
∧
r∈Q

[[ ř ∈ u]] = 0,

and
∧
λ<µ

Eu(µ) =
∧
λ<µ

∧
µ<r

[[ ř ∈ u]] =
∧
λ<r

[[ ř ∈ u]] = Eu(λ).
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That is,Eu is a resolution of identity. Conversely, ifE is a resolution of identity,
let

Du = { ř | r ∈ Q } and u(ř ) =
∨
s<r

E(s) for r ∈ Q.

It is obvious thatu is a quantum real number. Ifλ < r < µ, then

E(λ)6 [[ ř ∈ u]] 6 Eu(µ) .·. E(λ)6 Eu(µ),

Eu(λ)6 [[ ř ∈ u]] =
∨
s<r

E(s)6 E(µ) .·. Eµ(λ)6 E(µ).

It follows thatu is a quantum real number andEu = E. ¤

Thus, quantum real numbers represent self-adjoint operators onH . The quantum
real number representing self-adjoint operatorA will be denoted byÂ.

[[ Â = u]] = 1 ⇐⇒ A = Au.

5.3. Operations+ and · on R

Definition 5.3. Quantum real numbersu, v are said to becompatibleif ř ∈ u
and š ∈ v are compatible for allr, s ∈ Q, i.e.,

∀r, s∈Q̂((ř ∈ u)
˚
(š ∈ v)).

If u, v are compatible quantum real numbers, thenu+ v is defined by

u+ v
def= {r ∈ Q̌ | ∃r1, r2 ∈ Q̌((r = r1+ r2) ∧ (r1 ∈ u) ∧ (r2 ∈ v))}.

For quantum real numbersu, v,

u6 v
def⇐⇒∀r (r ∈ v→ r ∈ u).

u is said to bepositiveif 0̌6u. If u, v are compatible positive quantum reals, then
u · v is defined by

u · v = {r ∈ Q̌ | ∃r1, r2 ∈ Q̌((r = r1 · r2) ∧ (r1 ∈ u) ∧ (r2 ∈ v))}.
The definition of· can be extended to the case that{u, v} is any compatible

set of qunantum real numbers and also quantum complex numbers.

Theorem 5.2. (Takeuti (1978)). If u, v are compatible quantum real numbers,
corresponding to self-adjoint operators Au, Av, respectively,

Au =
∫
λd Eu(λ) Av =

∫
λd Ev(λ),
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then

Au+v =
∫
λd Eu+v(λ) =

∫
λd Eu(λ)+

∫
λd Ev(λ) = Au + Av

Au·v =
∫
λd Eu·v(λ) =

∫
λd Eu(λ) ·

∫
λd Ev(λ) = Au · Av

A complex number is defined inV P(H ) as a pair〈u, v〉 of compatible real
numbersu, v. 〈u, v〉 is denoted byu+ iv, wherei 2 = −1̌. If u, v are compatible
quantum real numbers, thenu+ iv is said to be aquantum complex number. A
quantum complex number represents a normal operator onH . We denote the set
of quantum complex numbers byC in V P(H ).

6. PROPOSITIONS, SYMMETRIES, AND STATES IN V P(H )

Quantum propositions are represented as projections which are self-adjoint
operators acting on a Hilbert spaceH , hence represented as quantum real numbers.
Symmetries are represented as unitary operators, and states of the quantum system
are represented as unit vectors ofH . The probability of obtaining the answer
“yes” by carrying out a measurement corresponding to propositionp in initial
state represented bya is ‖pa‖2. If ‖pa‖2 6= 0, then the state immediately after
the experiment is represented bypa

‖pa‖ .

6.1. Representation of Quantum Propositions inV P(H )

A projection p ∈ P(H ) is a self-adjoint operator,

p =
∫
λd E(λ) = 0 · E(0)+ 1 · (E(1)− E(0))= E(0)⊥.

Thus, the quantum real numberp̂ corresponding to propositionp is given by

p̂(ř ) =
∨
s<r

E(s) =
0, r 60,

E(0)= p⊥, 0 < r 61,
1, 1< r ,

Theorem 6.1. If p ∈ P(H ), thenp̂ is a quantum real number such that

[[ p̂=
q

1̌]] = [[ p̂=
q

0̌]]⊥ = p.

Conversely, if a positive quantum real u in VP(H ) satisfies

[[u=
q

1̌]] = [[u=
q

0̌]]⊥ = p,

then[[u = p̂]] = 1.
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Proof: Let p ∈ P(H ). It is obvious thatp̂ is a positive quantum real number and

( p̂(ř )→q [[ ř ∈ 1̌]]) ∧ (1̌(ř )→q [[ ř ∈ p̂]]) =
1, r 60,

p, 0 < r 61,
1, 1< r ,

( p̂(ř )→q [[ ř ∈ 0̌]]) ∧ (0̌(ř )→q [[ ř ∈ p̂]]) =
1, r 60,

p⊥, 0 < r 61,
1, 1< r .

Therefore, [[̂p=
q

1̌]] = [[ p̂=
q

0̌]]⊥ = p.

Conversely, assume thatu is a positive quantum real number such that

[[u=
q

1̌]] = [[u=
q

0̌]]⊥ = p.

Since [[u ⊂ Q̌]] = 1, we may assume thatDu = { ř | r ∈ Q }. It suffices to show
that

u(ř ) =
0, r 60,

p⊥, 0 < r 61,
1, 1< r .

1. If r 60, then

p6 (u(ř )→q [[ ř ∈ 1̌]]) = u(ř )⊥ and p⊥ 6 (u(ř )→q [[ ř ∈ 0̌]]) = u(ř )⊥.

It follows thatu(ř )6 (p∧ p⊥) = 0.
2. If 1 < r , then

p6 (1̌(ř ))→q [[ ř ∈ u]]) = u(ř ) and p⊥ 6 (0̌(ř )→q [[ ř ∈ u]]) = u(ř ).

Hence, 1= (p∨ p⊥)6u(ř ).
3. If 0 < r 61, then

p6 (u(ř ))→q [[ ř ∈ 1̌]]) = u(ř )⊥ and p⊥ 6 (0̌(ř )→q [[ ř ∈ u]]) = u(ř ).

Hence,p⊥ >u(ř ) and p⊥ 6u(ř ). It follows thatu(ř ) = p⊥.

¤

Thus, projectionp ∈ P(H ) is represented as a quantum real numberu such
that

[[u=
q

1̌]] = [[u=
q

0̌]]⊥ = p.

Definition 6.1.(in V P(H )). A quantum real numberu such that

u=
q

1̌↔ (u=
q

0̌)⊥
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is called aproposition, and the set of propositions will be denoted bŷP(H ).

P̂(H )
def= {u ∈ R | (u=

q
1̌)↔ (u=

q
0̌)⊥}.

That is,

D ̂(P(H )) = { p̂ | p ∈ P(H ) }, ̂(P(H ))( p̂) = 1 for p ∈ P(H )

Lemma 6.1.

[[ P̂(H ) =
q
{0̌, 1̌}]] = 1

Proof: If p ∈ P(H ), then

P̂(H )( p̂) = 1= [[ p̂=
q

1̌]] ∨ [[ p̂=
q

1̌]]⊥ = [[ p̂=
q

1̌]] ∨ [[ p̂=
q

0̌]] 6 [[ p̂ ∈
q
{0̌, 1̌}]] .

Since0̌= 0̂ ∈ P̂(H ) and1̌ ∈ P̂(H ),

[[ p̂ ∈
q
{0̌, 1̌}]] 6 [[ p̂=

q
0̌∨ p̂=

q
1̌]] 6 [[ p̂ ∈ P̂(H )]] = 1.

¤

For p, q∈P(H ), p̂6 q̂ ⇐⇒ q̂ ⊂ p̂. Hence,

Lemma 6.2. For p, q ∈ P(H ), p6q ⇐⇒ [[ p̂6 q̂]] = 1.

Proof: Let r ∈ Q. If r 60 or 1<r , then [[̌r ∈ p̂]] = [[ ř ∈ q̂]]. If 0<r 61,
then

p6q ⇐⇒ [[ ř ∈ q̂]] = q⊥ 6 p⊥ = [[ ř ∈ p̂]] .

It follows that

p6q ⇐⇒ ∀r∈Q([[ ř ∈ q̂→ ř ∈ p̂]] = 1) ⇐⇒ [[ p̂6 q̂]] = 1.

¤

Lemma 6.3. For A ⊂ P(H ), [[
∨

p∈A p̂ = ∨̂ A]] = 1.

Proof:
∨

p∈A p̂6
∨̂

A is obvious. If
∨

p∈A p̂6u ∈ P̂(H ), then u = q̂ for

someq ∈ P(H ), and
∨

A6q. Hence,
∨̂

A6
∨

p∈A p̂. ¤

Lemma 6.4. For p, q ∈ P(H ),

[[ p̂=
q

1̌↔ q̂=
q

0̌]] = 1 ⇐⇒ p = q⊥.
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Proof: It follows from the fact that p = [[ p̂=
q

1̌]] and q⊥ = [[ q̂=
q

1̌]]⊥ =
[[ q̂=

q
0̌]]. ¤

Definition 6.2. For p ∈ P(H ),

p̂⊥ def= p̂⊥

Definition 6.3.(in V P(H )). u, v∈P̂(H ) are said to beorthogonalif

u=
q

1̌→ v=
q

0̌.

u ∈ P̂(H ) is called anatomif

∀b∈P̂(H )(0̌ < b 6u→ b = u).

The set of atoms is denoted byAtom.

Atom def= {u ∈ P̂(H ) | ∀b ∈ P̂(H )(0̌ < b 6u→ b = u)}.
Axiom 12.

A1: ∀b∈P̂(H )∃p∈Atom (p6b).

A2: ∀b, q∈P̂(H )∀p∈Atom [( p∧ b = 0)∧ (b6q < p ∨ b)→ (b = q)]

(A1) and (A2) are valid inV P(H ).

6.2. SubuniverseV Bγ of V P(H )

From now on we fix a basis{ei }i∈I of H and denote the projection on the
1-dimensional subspace containingei by pi , for eachi ∈ I . Let U = {Uγ }γ∈0 be
the set of all unitary opertors acting onH .

For each unitary operatorUγ , {Uγ pi U ∗γ }i∈I generates a complete Boolean
subalgebra ofP(H ), which we denote byBγ . The identity mappingBγ → P(H )
is extended to the identity mappingV Bγ → V P(H ). That is,Bγ -valued universe
V Bγ is a subuniverse ofV P(H ), and

[[u = v]] Bγ = [[u = v]] and [[u ∈ v]] Bγ = [[u ∈ v]] (u, v ∈ V Bγ ).

Definition 6.4. For a unitary operatorU ∈ U, The mapping

σU : p 7→ U pU∗

is an automorphism ofP(H ), and is extended to the automorphism of
universe

σU : V P(H ) → V P(H ).
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By Theorem 3.2, we have

Theorem 6.2. For each unitary operator U∈ U,

1. σU [[u = v]] = [[σU u = σU v]] and σU [[u ∈ v]] = [[σU u ∈ σU v]] for
u, v ∈ V P(H ).

2. If ϕ(u1, . . . , un) is a bounded formula with constants u1, . . . , un, then
σU [[ϕ(u1, . . . , un)]] = [[ϕ(σU (u1), . . . , σU (un))]] .

3. σU [[u=
q

v]] = [[σU u=
q
σU v]] .

Corollary 6.1. If p ∈ P(H ) and U ∈ U, then projection p is represented by
quantum real number̂p, andσU ( p̂) is the quantum real number̂U pU∗ corre-
sponding toσU (p) = U pU∗.

Proof: [[ p̂=
q

1̌]] = p implies [[σU ( p̂)=
q

1̌]] = σU (p) = U pU∗. ¤

A quantum complex numberu+ iv represents a normal operator. The
compatible quantum real numbersu andv correspond to self-adjoint operators
Au =

∫
λd Eu(λ) andAv =

∫
λd Ev(λ), and there exists a unitary operatorUγ on

H such that each element of

{Eu(λ) | λ ∈ R} ∪ {Ev(λ) | λ ∈ R}
is spanned by a subset of{Uγei }i∈I (cf. Halmos, 1951). That is, there exists a
unitary operatorUγ ∈ U such thatu+ iv ∈ V Bγ .

Lemma 6.5. (Takeuti (1978)). Let u, v be quantum real numbers in VP(H ). If
there is a unitary opertor Uγ ∈ U such that u, v ∈ V Bγ , then for p∈ Bγ

p6 [[u=
q

v]] ⇐⇒ p · Au = p · Av,

where Au and Av are self-adjoint operators on H corresponding to u, v, respec-
tively.

6.3. Representation of Symmetries inV P(H )

A symmetry in the physical system is represented as a unitary operator ofH ,
which is a normal operator. Hence, each symmetry is represented as a quantum
complex number. The quantum complex number representing unitary operatorU
will be denoted byÛ . U = {U }γ∈0 denotes the set of all unitary operators acting on
H . The set of quantum complex numbers representingU in V P(H ) will be denoted
by Û, i.e.,

DÛ = {Û |U ∈ U}, Û(Û ) = 1 (U ∈ U)
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Each unitary operatorU ∈ U induces an automorphism ofP(H ),

σU : p 7→ U pU∗,

which preserves
∨

and⊥. σU is extended to an automorphismσU :V P(H )→V P(H )

of universe.
Generally, “f is a mapping ofA to B” in V P(H ), in symbols f : A→ B, is

defined as

f : A→ B
def⇐⇒ f ⊂ A× B ∧ ∀a ∈ A∃b ∈ B(〈a, b〉 ∈ f ) ∧
∀a∈A∀b, c ∈ B(〈a, b〉 ∈ f ∧ 〈a, c〉 ∈ f → b = c)

A ∈ V P(H ) is said to beglobal if A(x) = 1 or A(x) = 0 for eachx ∈ DA. If
A ∈ V P(H ) is global, we denote the set{x ∈ DA|A(x) = 1} by Ã.

Lemma 6.6. If A, B ∈ V P(H ) are global, andϕ̃ is a mappingÃ→ B̃, then
ϕ ∈ V P(H ) defined by

Dϕ = {〈x, ϕ̃(x)〉|x ∈ Ã}, ϕ(〈x, ϕ̃(x)〉) = 1

satisfies[[ϕ : A→ B]] = 1. We denote〈x, y〉 ∈ ϕ byϕ(x) = y.

SinceP̂(H ) is global,σU : p̂ 7→ ̂U pU∗ is the mapping in VP(H ) representing
a symmetry associated with unitary operator U.

6.4. Representation of States inV P(H )

Definition 6.5. A set{q̂i }i∈I of mutually orthogonal atoms of̂P(H ) is said to be
acomplete system of atomsif

∨
i∈I q̂i = Î .

For each unitary operatorU ∈ U, {σU ( p̂i )}i∈I is a complete system of atoms. If
ci is a complex number for eachi ∈ I , andUγ ∈ U, thenči is a quantum complex
number inV Bγ , and{σUγ

( p̂i )}i∈I is a set of mutually compatible quantum real
numbers inV Bγ , hence,

∑
i∈I či · σUγ

( p̂i ) is a quantum complex number inV Bγ .

Definition 6.6. If {ci }i∈I ⊂ C,
∑

i∈I |ci |2 < ∞ andU ∈ U, thenu =∑i∈I či ·
σU ( p̂i ) represents the normal operator

∑
i∈I ci ·U pi U ∗ (Corollary 6.1). We denote

(
√∑

i∈I |či |2) by ‖u‖.

Theorem 6.3. If {bi }i∈I , {ci }i∈I ⊂ C and if Uγ ∈ U, then quantum complex
numbers

∑
i∈I b̌i · σUγ

( p̂i ) and
∑

i∈I či · σUγ
( p̂i ) are elements of VBγ , and[[∑

i∈I

b̌i · σUγ
( p̂i ) =

∑
i∈I

či · σUγ
( p̂i )

]]
= 1=⇒ bi = ci for each i∈ I .
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Proof: Let U = Uγ . [[
∑

i∈I b̌i · σU ( p̂i ) =
∑

i∈I či · σU ( p̂i )]] = 1 implies∑
i∈I

bi · σU (pi ) =
∑
i∈I

ci · σU (pi ).

Then, by Lemma 6.5,σU (pi ) = U pi U ∗ 6 [[ b̌i =
q

či ]]. It follows that bi = ci for

eachc ∈ I . ¤

States of the physical system are represented by unit vectors of Hilbert space
H . Each vectorx ∈ H has expressions of the form

∑
i∈I (x, Uei )Uei for each

unitary operatorU . Forx ∈ H andγ ∈ 0, let x̂γ be the quantum complex number∑
i∈I (x, Uγei )̌ · σUγ

( p̂i ), which is inV Bγ .

x̂γ =
∑
i∈I

(x, Uγei )̌ · σUγ
( p̂i ).

x ∈ H will be represented as set [x] = {x̂γ }γ∈0 of quantum complex numbers
indexed by0. Indexed set{x̂γ }γ∈0 means the mapping from check set0 to the set
C of quantum complex numbers defiend byγ 7→ x̂γ . Let

[x] = {x̂γ }γ∈0, wherex̂γ =
∑
i∈I

(x, Uγei )̌ · σUγ
( p̂i ).

Hγ = {x̂γ |x ∈ H} (γ ∈ 0).

Lemma 6.7. If x , y ∈ H andγ ∈ 0, then

[[ x̂γ = ŷγ ]] = 1 ⇐⇒ [x] = [y].

Proof: Let U = Uγ . By Theorem 6.3,[[∑
i∈I

(x, Uei )̌ · σU ( p̂i ) =
∑
i∈I

(y, Uei )̌ · σU ( p̂i )

]]
= 1

=⇒ (x, Uei ) = (y, Uei ) ∀i ∈ I

=⇒ x = y

¤
It is obvious that

Lemma 6.8. For x, y ∈ H and c∈ C,

( ̂x + y)γ = x̂γ + ŷγ , (ĉx)γ = č · x̂γ , ‖x̂γ ‖ = ‖x‖̌,

where‖x̂γ ‖ = ‖
∑

i (x, Uei )̌ · σUγ
( p̂i )‖ =

(√∑
i |(x, Uγei )|2

)
.̌
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Definition 6.7.

[x] + [y]
def= [x + y], č · [x]

def= [cx], ‖[x]‖ def= ‖x‖̌.
‖[x]‖ will be denoted simply by‖x‖.

Definition 6.8.

Ĥ
def= {[x] | x∈H}.

We say [x] ∈ Ĥ is a state if‖x‖ = 1̌.

Statedef= {[x] ∈ Ĥ |‖x‖ = 1̌}
If x is a nonzero vector inH , then [x]

‖x‖ is a state.

Theorem 6.4. For a projection p∈ P(H ), there existsγ ∈ 0 such that p
˚
{Uγ

pi U ∗γ }i∈I . ThenP̂ ∈ V Bγ , and

p̂ · x̂γ = ( p̂x)γ .

Proof: Let U = Uγ . It is obvious thatp
˚
{U pi U ∗}i∈I implies p ∈ Bγ and p̂ ∈

V Bγ . Hence,p̂ andx̂γ are compatible.

p̂ · x̂γ =
∑
i∈I

(x, Uei )̌ · p̂ · σU ( p̂i )

=
∑

U pi U ∗6 p

(x, Uei )̌ · σU ( p̂i ) = ( p̂x)γ .

¤

Definition 6.9. p̂ defines the mappinĝp : Ĥ → Ĥ by

p̂[x]
def= [ px]

Theorem 6.5. Let Uγ ∈ U. For each i∈ I ,

(Ûγei )γ = σUγ
( p̂i ), and [Uγei ] =

∑
j∈I

(Uγei , ej )̌ [ej ].

Proof:

(Ûγei )γ =
∑
j∈I

(Uγei , Uγej )σUγ
( p̂ j ) = σUγ

( p̂i ).
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[Uγei ]γ =
[∑

j∈I

(Uγei , ej )ej

]
=
∑
j∈I

(Uγei , ej )̌[ej ].

¤

Definition 6.10. We denote [Uei ] by Û [ei ]. Û ∈ Û defines the mappinĝU :
Ĥ → Ĥ by

Û [x]
def= [U x] =

∑
j∈I

(x, ej )̌ [Uej ].

For the experiment ofp ∈ P(H ) in state [a],

[a] = [ pa+ p⊥a] = [ pa] + [ p⊥a].

If pa= 0 or p⊥a = 0, then

[a] = ‖pa‖ · [ pa] + ‖p⊥a‖ · [ p⊥a].

If pa 6= 0 andp⊥a 6= 0, then

[a] = ‖pa‖ · [x] + ‖p⊥a‖ · [y],

where [x] = [ pa]
‖pa‖ and [y] = [ p⊥a]

‖p⊥a‖ are states, and‖pa‖2 (‖p⊥a‖2) is the pro-
bability of obtaining “yes” (“no”).

6.5. Applications

We consider the experiment which consists in placing a polarizer in the beam
of photons. When the photons are despatched one by one, this experiment leads
to a plain alternative: either the photon passes through, or it is absorbed. We shall
define the propositionpθ by specifying the orientation of the polarizer (the angle
θ ) and interpreting the passage of a photon as a “yes.” Experiment shows that, to
obtain a photon prepared in such a way that “pθ is true,” it is sufficient to consider
the photons which have traversed a first polarizer oriented at this angleθ . Let aθ
be the state in which a photon has traversed a first polarizer oriented at angleθ ,
and let the second polarizer be oriented at angleθ ′. Then the probability‖pθ ′aθ‖2
of “yes” depends only on the difference of the anglesθ ′ − θ , and is known to be

cos2(θ ′ − θ ).

The experiment is interpreted inV P(H ) as follows.
The measurement ofpθ ′ in stateaθ induces a change of expression of the

state.

[aθ ] = [ pθ ′aθ ] + [( pθ ′ )
⊥aθ ]
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where ‖pθ ′aθ‖2 = cos2(θ ′ − θ ) is the probability of “yes” and‖(pθ ′ )⊥aθ‖2 =
sin2(θ ′ − θ ) is the probability of “no.”

Let {a0, aπ
2
} be the fixed basis ofH . If θ = 0 andθ ′ = π

2 , then

[a0] = [pπ
2
a0
]+ [p⊥π

2
a0
] = (cos

π

2

)
ˇ
[
aπ

2

]+ (cosθ )̌ [a0].

Since (̂a0)I = 0̌ · (â π
2
)I + 1̌ · (â0)I = 0̌ · p̂ π

2
+ 1̌ · p̂θ , whereI is the identity op-

erator, we have

pπ
2
6 [[( â0)I =

q
0̌]], and pπ

2
6 [[( â0)I =

q
1̌]].

This means that right after the traversing in the state [a0], the answer forpπ
2

is
“yes” with probability 0, that is, the answer is “no,” and the answer for (pπ

2
)⊥ = p0

is “yes” with probability 1.
If θ = π

4 andθ ′ = π
2 , then‖p′θaθ‖2 = 1

2, ‖(p′θ )
⊥aθ‖2 = 1

2, and[
aπ

4

] = ( 1√
2

)
ˇ
[
aπ

2

]+ ( 1√
2

)
ˇ[a0],

where [aπ
2
] = [
√

2pπ
2
aπ

4
] and [a0] = [

√
2(pπ

2
)⊥aπ

4
] are states. Thus,

pπ
2
6
[[

(â π
4
)I =

q

(
1√
2

) ]̌]
, and

(
pπ

2

)⊥ 6 [[(â π
4

)
I
=
q

(
1√
2

) ]̌]
.

This means that right after the traversing in the state [aπ
4
], the answer for

pπ
2

is “yes” with probability 1
2, and “no” with probability1

2. The states right after
measurement is [aπ

2
] or [a0], according to “yes” or “no.”
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